![55. A Deoxyfluoroalkylation-Aromatization Strategy to Access Fluoroalkyl Arenes](https://images.squarespace-cdn.com/content/v1/615f42729a3e7155f1428c2e/1736548946452-Y5FD9MCE6Z1EDT7G26EB/55+TAR+corrected.png)
55. A Deoxyfluoroalkylation-Aromatization Strategy to Access Fluoroalkyl Arenes
Bhattarai, P.; Koley, S. K.; Goel, K.; Altman, R. A.*
![54. Synthesis of 4-(2,2-Difluorovinyl)benzonitrile through a Wittig-type Olefination of 4-Formylbenzonitrile](https://images.squarespace-cdn.com/content/v1/615f42729a3e7155f1428c2e/1735829870222-IX5G5OT5AYVBQUZJZMZC/54+TAR.png)
54. Synthesis of 4-(2,2-Difluorovinyl)benzonitrile through a Wittig-type Olefination of 4-Formylbenzonitrile
Andrew J. Intelli; Jacob P. Sorrentino; and Ryan A. Altman*
![53. A Phenotypic High-Throughput Screen Identifies Small Molecule Modulators of Endogenous RGS10 in BV-2 Cells](https://images.squarespace-cdn.com/content/v1/615f42729a3e7155f1428c2e/1731787399959-WDENF8ALGZ16U832RGHH/53+TAR.jpg)
53. A Phenotypic High-Throughput Screen Identifies Small Molecule Modulators of Endogenous RGS10 in BV-2 Cells
Talele, S.; Gonzalez, S.; Trudeau, J.; Junaid, A.; Loy, C.; Altman, R. A.; Sjogren, J. B.*
![52. α-Amino-β-Carboxymuconate-ε-Semialdehyde Decarboxylase Catalyzes Enol/Keto Tautomerization of Oxaloacetate](https://images.squarespace-cdn.com/content/v1/615f42729a3e7155f1428c2e/1730575839705-XDQVT6J0R44A69M2SSXK/52+TAR.jpg)
52. α-Amino-β-Carboxymuconate-ε-Semialdehyde Decarboxylase Catalyzes Enol/Keto Tautomerization of Oxaloacetate
Yang Y.; Davis I.; Altman R. A.; Liu A.
![51. Palladium and Copper Co-Catalyzed Chloro-Arylation of gem-Difluorostyrenes – Use of a Nitrite Additive to Suppress β-F Elimination](https://images.squarespace-cdn.com/content/v1/615f42729a3e7155f1428c2e/1728394442485-PXBJDHTQ439T9E3FV4BT/51+TAR+corrected.png)
51. Palladium and Copper Co-Catalyzed Chloro-Arylation of gem-Difluorostyrenes – Use of a Nitrite Additive to Suppress β-F Elimination
Intelli, A. J.; Wayment, C. Z.; Lee, R. T.; Yuan, K.; Altman, R. A.*
![50. Deoxytrifluoromethylation/Aromatization of Cyclohexan(en)ones to Access Highly Substituted Trifluoromethylarenes](https://images.squarespace-cdn.com/content/v1/615f42729a3e7155f1428c2e/3d24890a-cc6e-45bf-a7a9-0d17a2ec133f/50+TAR.png)
50. Deoxytrifluoromethylation/Aromatization of Cyclohexan(en)ones to Access Highly Substituted Trifluoromethylarenes
Bhattarai, P.; Abd El-Gaber, M. K.; Koley, S.K.; Altman, R. A.*
![49. Peroxide-Initiated Hydrophosphination of gem-Difluoroalkenes](https://images.squarespace-cdn.com/content/v1/615f42729a3e7155f1428c2e/3ac77a55-4769-4212-a869-623711ee9156/49+TAR.png)
49. Peroxide-Initiated Hydrophosphination of gem-Difluoroalkenes
Intelli, A. J.; Lee, R. T.; Altman, R. A.*
![48. Palladium-Catalyzed Dearomatization of Benzothiophenes: Isolation and Functionalization of a Discrete Dearomatized Intermediate](https://images.squarespace-cdn.com/content/v1/615f42729a3e7155f1428c2e/d8dce436-fa2a-4010-a46a-0e865c4aa802/48+TAR.png)
48. Palladium-Catalyzed Dearomatization of Benzothiophenes: Isolation and Functionalization of a Discrete Dearomatized Intermediate
Intelli, A. J.; Pal, M.; Selvaraju, M.; Altman, R. A.*
![47. A Diselenide Additive Enables Photocatalytic Hydroalkoxylation of gem-Difluoroalkenes](https://images.squarespace-cdn.com/content/v1/615f42729a3e7155f1428c2e/8652409f-9cb2-410d-af0f-2ae235d683c3/47+TAR.png)
47. A Diselenide Additive Enables Photocatalytic Hydroalkoxylation of gem-Difluoroalkenes
Herrick, R. M.; Abd El-Gaber, M. K.; Rodriguez, L. G. C.; Altman, R. A.*
![46. Photocatalytic Hydrothiolation of gem-Difluoroalkenes](https://images.squarespace-cdn.com/content/v1/615f42729a3e7155f1428c2e/9a4f11f8-8dd2-4fae-9a4b-048b2daa89df/46+TAR.png)
46. Photocatalytic Hydrothiolation of gem-Difluoroalkenes
Sorrentino, J. P.; Herrick, R. M.; Abd El-Gaber, M. K.; Abdelazem, A. Z.; Altman, R. A.*
![45. Cu(II)-Catalyzed Oxidation of gem-Difluoroalkenes Generate α,α-Difluorinated-α-Phenoxyketones](https://images.squarespace-cdn.com/content/v1/615f42729a3e7155f1428c2e/44ff55d6-3f2d-4044-a50a-20110ec73d0b/45+TAR.png)
45. Cu(II)-Catalyzed Oxidation of gem-Difluoroalkenes Generate α,α-Difluorinated-α-Phenoxyketones
Koley, S.; Cayton, K. T.; González-Montiel, G. A.; Yadav, M. R.; Orsi, D. L.; Intelli, A. J.; Cheong, P. H.-Y.;* Altman, R. A.*
![44. Fluoroalkylation of Dextromethorphan Improves CNS Exposure and Metabolic Stability](https://images.squarespace-cdn.com/content/v1/615f42729a3e7155f1428c2e/1724954120506-U32MYPZYWVUPT4IIP3VV/44+TAR.png)
![43. Modulating β-Arrestin-2 Recruitment at the δ- and μ-Opioid Receptors](https://images.squarespace-cdn.com/content/v1/615f42729a3e7155f1428c2e/3446b4e6-af52-4626-a982-66bd3829ce8b/43+TAR.png)
43. Modulating β-Arrestin-2 Recruitment at the δ- and μ-Opioid Receptors
Sharma K. S.; Cassell, R. J.; Meqbil, Y. J.; Su, H.; Blaine, A. T.; Cummins, B. R.; Mores, K. L.; Johnson, D.; van Rijn, R. M.;* Altman, R. A.*
![42. Fluorine-Retentive Strategies for the Functionalization of gem-Difluoroalkenes](https://images.squarespace-cdn.com/content/v1/615f42729a3e7155f1428c2e/a1dfb5a2-ab2b-4706-a68a-cb9a5a1262b6/42+TAR.png)
42. Fluorine-Retentive Strategies for the Functionalization of gem-Difluoroalkenes
Sorrentino, J. P.; Altman, R. A.*
![41. Acid-catalyzed Hydrothiolation of gem-Difluorostyrenes to Access α,α-Difluoroalkylthioethers](https://images.squarespace-cdn.com/content/v1/615f42729a3e7155f1428c2e/4427f848-153c-449d-a4fb-7849439f2559/41+TAR.png)
41. Acid-catalyzed Hydrothiolation of gem-Difluorostyrenes to Access α,α-Difluoroalkylthioethers
Sorrentino, J. P.; Orsi, D. L.; Altman, R. A.*
![40. Diflunisal Derivatives as Modulators of ACMS Decarboxylase Targeting the Tryptophan-Kynurenine Pathway](https://images.squarespace-cdn.com/content/v1/615f42729a3e7155f1428c2e/8328eb6a-9b0e-4d06-b50f-b965bb9968f3/40+TAR.png)
40. Diflunisal Derivatives as Modulators of ACMS Decarboxylase Targeting the Tryptophan-Kynurenine Pathway
Yang, Y.; Borel, T.; de Azambuja, F.; Johnson, D.; Sorrentino, J. P.; Udokwu, C.; Davis, I.; Liu, A.;* Altman, R. A.*
![39. Arylation of gem-difluoroalkenes using a Pd/Cu Co-catalytic system that avoids β-fluoride elimination](https://images.squarespace-cdn.com/content/v1/615f42729a3e7155f1428c2e/b5b322cc-7fc4-4c5c-a481-f8a9e2999557/39+TAR.png)
39. Arylation of gem-difluoroalkenes using a Pd/Cu Co-catalytic system that avoids β-fluoride elimination
Yuan, K; Feoktistova, T.; Cheong, P. H.-Y.;* Altman, R. A.*
![38. Cobalt-Catalyzed Selective Unsymmetric Dioxidation of β,β-Difluorostyrenes](https://images.squarespace-cdn.com/content/v1/615f42729a3e7155f1428c2e/bcaf965c-8928-40ec-8786-aee93c01120b/38+TAR.png)
38. Cobalt-Catalyzed Selective Unsymmetric Dioxidation of β,β-Difluorostyrenes
Orsi, D. L.; Sorrentino, J. P.; Douglas, J. T.; Altman, R. A.*
![37. Late-Stage Conversion of a Metabolically Labile Aryl Methyl Ether-Containing Natural Product to Fluoroalkyl Analogues](https://images.squarespace-cdn.com/content/v1/615f42729a3e7155f1428c2e/1b1962ad-ded8-4286-a559-de04843d5021/37+TAR.png)
37. Late-Stage Conversion of a Metabolically Labile Aryl Methyl Ether-Containing Natural Product to Fluoroalkyl Analogues
Sorrentino, J. S.; Ambler, B. R.; Altman, R. A.*
![36. Recent Advances in Transition Metal Catalyzed Functionalization of gem-Difluoroalkenes](https://images.squarespace-cdn.com/content/v1/615f42729a3e7155f1428c2e/000b06e1-19c9-4361-99fc-19660965595c/36+TAR.png)